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ABSTRACT

The GLIMMER system for microbial gene identification
finds ~97-98% of all genes in a genome when
compared with published annotation. This paper
reports on two new results: (i) significant technical
improvements to G LIMMER that improve its accuracy
still further, and (ii) a comprehensive evaluation that
demonstrates that the accuracy of the system is
likely to be higher than previously recognized. A
significant proportion of the genes missed by the
system appear to be hypothetical proteins whose
existence is only supported by the predictions of
other programs. When the analysis is restricted to
genes that have significant homology to genes in
other organisms, G LIMMER misses <1% of known
genes.

INTRODUCTION

Accurate microbial gene identification is becoming ever mor
important with the increasing rate of whole genome
sequencing projects. In the past year alone, eight new bacteri
and archaeal genomes have appeared, and the pace contin

(S)

a generalization of Markov chain methoda.I®vER 1.0 has
been used as the gene finder #orrelia burgdorferi (2),
Treponema pallidum(3), Chlamydia trachomatis(4) and
Thermotoga maritimd5), and the software is in use at over
100 laboratories and institutes. Below we describe the algorithm
and performance results ofLBIMER 2.0, a gene finder that
incorporates several technical improvements to thev@er

1.0 algorithm. As a result of these improvements/MMER

2.0 has slightly higher sensitivity thanL®mer 1.0 and is
much better at resolving overlapping gene calls. The latter
property is especially useful for genomes sucbagiococcus
radiodurans which due to their high GC-content have
numerous long open reading frames (ORFs) that can easily lead to
predictions of genes whose boundaries overlap incorrectly.

METHODS AND ALGORITHMS

We begin by briefly reviewing Markov models in the context
of DNA sequence analysis. We then describe the probabilistic
model used in GMMER 2.0 to identify regions that are likely

to be genes. We then describe howIER 2.0 resolves
conflicts when overlapping genes are predicted. The complete
[HMMER 2.0 system is available from The Institute for
ggomic Research at http://www.tigr.org/softlab

to accelerate. Each new genome contains thousands of neWarkov Models

genes, all of which are deposited into public databases. These o ,
genes then become the basis for much further research into tAgMarkov chain is a sequence of random variabieswhere

biology of these organisms, and their sequences are used fé{¢ Probability distribution for eacly; depends only on the
further biological study. For work such as microarray analysisPreceding variablesx y, ..., %, for some constarit For DNA

in which specific sequences are arrayed onto a substrate afiquence analysis, a Markov chain models the probability of a
used as probes to measure expression levels, the accuracyddfen baseb as depending only on thie bases immediately
gene predictions is critical. The same point can be made aboffior tobin the sequence. We refer to these precedlibgses
knockout experiments, which are an important tool to use ir@s the context of basein the sequence. The most common
determining the function of the large numbers of genes whos/pe of Markov chain is a fixed-order chain, in which the entire
function is unknown at the time of publication. Such hypotheticak-base context is used at every position. For example, a fixed
proteins typically comprise 30—40% of the genes in a newlbth-order Markov chain model of DNA sequences comprises

sequenced genome.

45 = 1024 probability distributions, one for each possible 5mer

GLIMMER 1.0 is a computational gene finder that finds 97-98%gontext. Such fixed 5th-order models have proven effective at
of all genes in a prokaryotic genome without any human intergene prediction in bacterial genomes (6,7).
vention (1). The system can be quickly and easily trained using Ideally, larger values fdk are always preferable. Unfortunately,
only the genome sequence of interest. The technical undeibecause the training data available for building models is
pinning of the system is an interpolated Markov model (IMM), limited, we must limitk. In most collections of DNA coding
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sequences, however, there is substantial variability in thecontext Length k = 12:
frequency of occurrence of differekners.

IMMs are a generalization of fixed-order Markov chains that
combine contexts of different lengths to compute the probability
of baseb. Our formulation allows each context to have a
weight based in part on its frequency; this allows the IMM to
be sensitive to how common a particular oligomer is in a given
genome. In particular, rar&émers should not be used for
prediction; the IMM will ignore these in favor of shorter
Markov chains. On the other hand, some léngers may occur
very frequently, and for those the IMM can give the longer
context more weight and make a better prediction. These
weights define an interpolated probability distribution that
incorporates information from multiple Markov chains. An
IMM can emulate a fixedkth-order chain simply by setting all
weights to zero except for those associated ith

Details of how to construct an IMM for sequence data have
been described previously (1). For coding regionsMBER
1.0 builds three separate IMMs, one for each codon position
[This is known as a 3-periodic Markov model (6).] These
IMMs include 0-8th order Markov chains, as well as weights
computed for every oligomer of eight bases or less that appears
in the training data. These weights and Markov models ar.Ei ure 1. Sample ICM decomposition tree. The root position 12 has maximum

mte_rpOIated to produce a score for each base in any pOtentlﬁ tual information with the final base position 13. Each child of the root
coding sequence. The logs of these scores are summed to SCRiResents the subset of windows with the indicated nucleotide value at

each coding region. position 12, and indicates the maximum mutual information position for that
subset. Each node is similarly decomposed into children. Note that children of
The interpolated context model a single node may represent different base positions.

Interpolated context models (ICMs) are a further extension of

IMMs. For a given contex€ = b;b, ... b, of lengthk, the IMM )

in GLIMMER 1.0 computes a probability distribution fd,, The same procedure can now be performed again for each of

using as many of the bases immediately precetipgas the the fqur sets of WanOWS. W.Ithln gach set, the posm.o.n th.at has

training data set allows. The ICM is more flexible and canthe highest mutual information with the base at positef is

select any of the bases @ (not just those adjacent tg,,) to chosen. Th_e_ foyr nucleotide values at that_ position induce a

determine the probability ob,,. In general, from a given further partitioning of the current set of windows into four

context, the ICM will choose approximately the same numbepUPSets. _ .

of bases as the IMM. Our motivation for choosing bases other This process can be viewed as constructing a tree of

than those at the end of the context is the fact that in codingositions within context strings. A sample portion of such a

regions the significance of a given base depends strongly on itsee is shown in Figure 1. The construction is terminated when

position in a codon; e.g. the nucleotide in the third codonthe tree depth reaches a predetermined limit, or when the size

position is sometimes irrelevant to the amino acid translation.0f a set of windows becomes too small to be useful to estimate
The criterion employed by the ICM to select which bases ofhe probability of the last base position.

a context C to use is mutual information. The mutual information Each node in the ICM decomposition tree represents a set of

between a given pair of discrete random varia{esndY is windows that provide a probability distribution for the final

defined to be: base position. The root node, which includes all possible
P(x)P(y:) windows, represents a Oth-order Markov model. All other
1(X;Y) = ZI‘, ZJ‘, P(x;, y;) log (P(Ix—y)]) nodes give a probability distribution for the final base position,

i Y

conditional on a specific set of bases occurring at the positions
wherex; andy; are the values taken by random variabkeand  indicated on the path to the root from that node.

Y respectively, and R y)) is the joint probability ofx andy, Note that the IMM used in GMMER 1.0 is a special case of
together. this ICM, namely the case where the base chosen at each level
To construct an ICM with context lengkfrom a training set  of the tree is the last available base in the context window.

T of DNA sequences, we begin by considering all windowsThus, when the nearest positions to bagg provide the

(i.e. oligomers) of lengttk+1 that occur inT. We let random strongest evidence for its value, the ICM automatically
variableX; be the distribution of bases in the first position of chooses them and the result is identical to the IMM. But when
those windows )X, be the distribution of bases in the secondother bases provide stronger evidence, as is often the case, the
position; and so on througX,,;. We then calculate the mutual ICM will choose them instead.

information valued (X;; Xy, 1(X5 Xisr), -0 1(Kg Xirp), @nd The interpolation mechanism used in the ICM is identical to
choose the maximum. Suppose that maximunh(}§, X,,). ~ that used in GIMMER 1.0. It takes a weighted sum of two
We then partition our set of windows into four subsets basegrobability distributions, where the weights are determined by
on the nucleotide that occurs in positipim the window. the number of training instances used to construct the distribution



4638 Nucleic Acids Research, 1999, Vol. 27, No. 23

and its statistical significance as measured by? dest. The process continues as long as the resulting gene is longer than
only difference is that the ICM interpolation is naturally the minimum gene length (an easily adjustable parameter).
viewed as interpolating between the distributions at a parent
and child node in the tree, while the IMM interpolation is 4% 3
always between distributions obtained using different numbers B 3
of bases at the end of the context window.
The interpolated context model presented here is essentialnly moving the start ofA can resolve the overlap. Sinde
a probabilistic decision tree, i.e. a sparse probability distributioscores higher, we only try to move it if the overlap is a relatively
expressed as a decision tree. The tree construction is identicahall fraction ofA's length. If adjustingA is not successfuB is
to constructing classification trees using information gain asejected.
the splitting criteria (8). Classification trees associate a class 3 5 4
label with each leaf node of the tree. The labels in our case are 5 3
the four nucleotide values, and our interpolated context model B

determines a probability distribution for the base to bepoth starts can move. We first move the startBofintil the

predicted given the context in which it occurs. Probabilisticoyerlap region scores higher f8t Then we move the start of

decision trees have been designed for other applications (9—-1Runtil it scores higher. TheB again, and so on, until either the

In computational biology probabilistic decision trees haveoverlap is eliminated or no further moves can be made.

been used for modeling splice site junctions (12) and exon mode-An additional step is taken by .aMER 2.0 to help find

ling (13). genes that previously were missed because the score from the

independent probability model was too high. The independent

probability model is used by both versions of the system to

In developing GIMMER 2.0, a conscious effort was made to compete against the IMMs used to score all six reading frames;

reduce the number of false negative gene predictions at thits purpose is to serve as a model of non-coding DNA. In order

expense of a slight increase in the number of false positivéo be called a gene, an ORF must score higher than the inde-

predictions. Upon close examination of i@vER 1.0s output, pendent model as well as the other five reading frames. Genes

we learned that occasionally a gene was discarded becausetit@t were missed due to high scores from this independent

start codon was positioned too far in thedfrection, resulting model will fall in between the genes predicted byIGvER

in substantial overlap with another gene.i®ver 2.0 solves  1.0. For a target ORF in such regions,IBvER 2.0 considers

this problem by incorporating additional rules to resolve suctihe scores on subsequences of that ORF as compared to other

overlaps. overlapping ORFs. If these subsequences receive sufficiently
In GLIMMER 1.0, when two potential genésandB overlap,  high scores, and if the ORF scores relatively high in relation to

the overlap region is scored. K is longer thanB, and if A the independent model (even though it did not.e.xceed the

scores higher on the overlap region, and if mov&sstart site normal score threshold to be called a gene), then it is added to

will not resolve the overlap, thel is rejected. the list of prospective genes.

In GLIMMER 2.0, when potential genésandB overlap, the The process of evaluating overlaps INI@GVER 2.0 is
overlap region is scored just as in@MVER 1.0. The system performed in an iterative fashion in order to avoid rejecting
o genes unnecessarily. For example, in the case where ORF

causes ORBB to be rejected, an® in turn causesC to be
rejected, we wish to reject on and not botB andC. Thus,

we perform the rejection phase in multiple stages, first
discardingB and then checking again for overlaps.

Resolving overlapping genes

aggressively, as follows. Suppose geéxscores higher, now
four different orientations are considered:

A 5 3
3 5 B

COMPUTATIONAL METHODS

h lap. Kis sianifi vl haB (as d We analyzed 10 completed microbial genomidaemophilus
remove the overlap. lIs significantly longer tha (as eter- influenzag14), Mycoplasma genitaliun(il5), Methanococcus
mined by a program parameter), thBris rejected. Otherwise, jannaschii (16), Helicobacter pylori(17), Escherichia coli

both A andB are called genes, with an annotation that ther 18), Bacillus subtilis (19), Archaeoglobus fulgidug20),

In this case, postponing the start site of eithAesr B does not

was a doubtful overlap. B.burgdorferi(2), T.pallidum(3) andT.maritima(5). On each
, » of the genomes, we ran both. ®MER 1.0 and GIMMER 2.0.
Al - g ) All parameters were the defaults, although adjusting these
B2 $ default settings will improve performance on selected

genomes. The training data was identical in every case in order
Only moving the start oB can resolve the overlap. If it can be to ensure a fair comparison.
moved, then itis. If not, and B is significantly shorter thaa, The method of training was as follows: using only the
thenB is rejected. Otherwise, both are listed as genes, with genome itself as input, we extracted all ORFs longer than
note indicating the overlap. Moving a start codon works a$00 bp from each genome. From these long ORFs, only those
follows: the system shortens the predicted gene by shifting thihat did not overlap other long ORFs were retained; this
start location to the next available start codon. If this does ngproduces a set of ORFs that are highly likely to be coding. (The
resolve the overlap, it moves the start codon again. Thiprograms to perform this extraction are included in the



GLIMMER package; total runtime is <1 min on a standard
desktop PC.) For all genomes in this study, this set contains
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Table 3. Differences between the length and GC-content of
genes that are conserved in other organisms versus

more than enough data to train the system accurately. ‘hypothetical’ genes

Next, the IMM training was conducted using the original . Consorved gones " Hypothotical gones |
GLIMMER 1.0 program and the new, tree-structured ICMs for OrganiS | ber %GO Avg lon | Number %GC_ Avg len
GLIMMER 2.0. These models were then used to identify genes Honfluenze | 501 390 992 | 237 375 502
in the complete genome. For all genomes, ranging in size from M. genitolium. | - 478 316 1099 b 325 458

.. M. jannaschii 1259 32.8 915 468 29.4 662

0.5 to 4.7 Mb, training GMMER 1.0 or GIMMER 2.0 takes A, Fulgidus 1799 500 s07 | 638 410 616
<1 min on a Pentium 400 PC running the Linux operating B. subilis 1249 448 1118 | 2851 440 700
system. The gene finding step takes an additional 1 min or less. L. coli 256 525 1074 ) 1628 0.6 749
. . . H. pylori 1092 40.3 1081 498 37.2 674

The results of the comparison are summarized in Tables 1-4. B. burgdorferi | 601 207 1073 248 262 818
In all 10 genomes, there are only 12 confirmed annotated genes T. pallidum [CEREEE 2§4 z‘* Zgg

H T. maritima 1504 46.8 1011 373 5
that GLIMMER 1.0 found that GIMMER 2.0 did not. In all these Averones TP R TY I T e Ty w—

results, we have not discounted gene predictions that fall into
known ribosomal RNA or tRNA regions. Since such regions
are easy to identify independently ofLGMER, this step
should be a routine part of any annotation process.

The disproportionately small number of conserved genes for
B.subtilisreflects the fact that this set includes only those
genes that were identified experimentally prior to the
completion of the genome sequence.

Table 1.A comparison of the number of genes correctly found by

GLIMMER 1.0 and GIMMER 2.0 for 10 complete genomes Table 4. Numbers of genes confirmed by database matches

GLIMMER 1.0 CLIMMER 2.0 | found exclusively by GIMMER 1.0, by G.IMMER 2.0, and by
Organism Genes Annotated Additional Annoffated Additional both systems
annotated | genes found | genes found | genes found | genes found
H. influenze 1738 1715 (98.7%) 234 (13.5%) | 1720 {99.0%) 242 (13.9%) Organism GLIMMER 1.0 Only GLIMMER 2.0 Only Found
M. genitalium 483 479 (99.2%) 8 (16.1%) | 480 (99.4%) 82 (17.0%) Matched | Additional | Matched | Additional | by both
M. jannaschii 1727 1715 (99.3%) 210 (12.2%) | 1721 (99.7%) 218 (12.6%) 7]1?171ﬂuenzaz 1 48 5 60 1494
H. pylori 1590 1545 (97.2%) | 293 (18.4%) 1550 (07.5%) | 322 (20.3%) M. genitalium 0 1 X % 75
E. coli 4269 4099 (96.0%) 757 (17.7%) 8 (97.4%) 868 (20.3%) M. jannaschii 0 o7 1 40 1955
B. subtilis 4100 4006 (97.7%) 917 (22.4%) IO?O (98.3%) | 1022 (24.9%) 1. pylori 1 40 9 73 1082
A. fulgidus 2437 2385 (07.9%) | 274 (11.2%) | 2404 (98.6%) | 341 (14.0%) 5o . 176 5 230 o617
B. burgdorfert 849 845 (99.5%) 67 (7.9%) 843 (99.3%) 62 (7.3%) B, subtilis 4 163 6 200 1225
T. pallidum 1039 1012 (97.4%) 180 (17.3%) | 1014 (97.6%) 250 (24.1%) A, fulid 0 54 3 139 1778
T. maritima 1877 1849 (985%) | 190 (10.1%) | 1854 (98.8%) | 208 (11.1%) - Julgidus
B. burgdorferi 1 24 2 16 598
T. pallidum 2 s 5 146 742
T. maritima 2 65 7 83 1486

The columns labeled ‘Additional’ show how many additional
genes are uniquely predicted by each of the two systems
respectively. Thus forH.influenzae GLIMMER 1.0 predicts

Table 2. The number of genes with database matches foundumyNER
1.0 and GIMMER 2.0 for 10 complete genomes

Organism Genes Cenes with Genes found Genes found 49 genes that GUMER 2.0 does not, one of which has database
annotated | database match | by GLIMMER 1.0 | by GLIMMER 2.0 homology. Likewise, GMMER 2.0 predicts 62 genes that @MER
H. influenza 1738 1501 1495 (99.6%) 1496 (99.7%) 1.0 does not, two of which have database matches. They agree on
M. genitalium 483 478 475 (99.4%) 476 (99.6%) 1494 (out of 1501) gene predictions with database homology.
M. jannaschii 1727 1259 255 (99.7%) 1256 (99.8%)
H. pylori 1590 1092 1083 (99.2%) 1084 (99.3%)
E. coli 4269 2656 2618 (98.6%) 2632 (99.1%)
B. subtilis 4100 1249 1229 (98.4%) 1231 (98.6%)
A. fulgidus 2437 1799 1778 (98.8%) 1786 (99.3%) ] )
B. burgdorferi 849 601 500 (99.7%) 600 (99.8%) Therefore the question remains open as to how accurate these
T. pallidum 1039 795 a4 (98.5%) TAT (98.9%) predictions really are. This second experiment is an attempt to
T. maritima 1877 1504 1488 (98.9%) 1493 (99.3%)

answer that question more precisely.
Database matches include genes that match genes with unknown function, 1N order to measure accuracy more precisely, we extracted a
known as ‘conserved hypotheticals’, as well as genes whose function issubset of genes from the published annotation for each
known. (Thanks to Alain Viari for testing BGMMER on B.subtilis The genome. These subsets include only those genes that have
1249 genes listed in the third column Bisubtiliswere selected according to S|gn|f|cant homology to known proteins, as indicated in the
an even stricter criterion than havmg a database match; these are the genes blished M f th h f |
that already had been documented in the literature prior to the completionPURIISN€ annotation. Many of these genes have a functiona
of the B.subtilisgenome project.) assignment, but some are homologous to other genes of
unknown function (these are sometimes annotated as
‘conserved hypothetical’ proteins). We included the latter in
A second set of experiments was designed to find the truthe experiment because the existence of homology itself is
accuracy of GIMMER. In the original study (1), GMMER  Very strong evidence that the sequence encodes a protein.
1.0’s gene calls were compared to the published annotation férxcept for the use of only a subset of annotated genes, all other
several completed genomes. The results of this study showetgtails of the experiments were the same as for Table 1. The
that QIMMER 1.0 was able to find 97-98% of annotated genegesults of this second comparison are summarized in Table 2.
fully automatically, using neither database searches nor humanThe results make it clear thattMMER iS more accurate on
intervention; however, published annotation is not 100% accuratgenes confirmed by sequence homology than it is on the
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remaining genes. For IBIMER 1.0, sensitivity ranges from predicted by GIMMER 2.0 is higher in nine of the 10 genomes.
98.4 to 99.7%, with an average of 99.1%. FanBver 2.0, Because of its revised rules to resolve overlapping ORFs,
the range is 98.6—-99.8%, with an average of 99.3%. In contrasGLIMMER 2.0 generally makes more gene predictions than
GLIMMER 1.0’s average accuracy on the complete set oGLIMMER 1.0 when all parameters are set identically as in the
annotated genes for all 10 genomes is 98.1%, anM&ER  above-described results. To verify that the additional annotated
2.0's average on those genes is 98.6%. matches found by GMMER 2.0 are not attributable merely to
Table 3 contains a summary of how the ‘confirmed’ (orthe greater number of predictions, we compared the two
conserved) genes differ from the hypothetical genes in theystems with GiMMER 1.0’s parameters set so that the total
10 genomes used in this study. On average, the hypotheticaliditional gene predictions for all 10 genomes matched
genes are considerably shorter and have ~2% lower GC-contet jumer  2.0. Specifically, we raised the overlap-length
These data are consistent with the hypothesis that these hypgarameter, which is the maximum number of DNA bases by
thetical genes contain a significant number of non-codingyhich two ORFs can overlap and both still be predicted as

regions that were mistakenly annotated as coding. (FQjenes. The results are shown in Table 6. With this adjustment
example, the presence of stop codons alone lowers the avergggver 2.0 still finds 99 more annotated genes than

GC-content of non-coding regions.) Most hypothetical gengs;, ,yver 1.0, indicating that its predictions are in fact more

annotations are based primarily on the predictions of COMPUs¢crate than GvvER 1.0. The parameters of either system

tational systems. The fact thal.GIMER is more accurate on ., pe adiusted to reduce the number of additional genes, at the
conserved genes is suggestive that the hypothetical predlct% st of missing some true genes

genes missed by IBUMER are the result of simple disagree-
ment between two computational gene finders.

In each of the 10 genomes,LBMER 2.0 found more Tgble 5.Genes iri\/l.tubgrculosiéound automatically by‘GMMER 2.0
conserved genes tharL@MER 1.0. Usually the number was with homology to protein sequences from other organisms
very small, only 1-5 genes for eight of the genomes. Howevel

the set Of Conserved genes found bMWER 20 was not a Start Stop Length  Accession F\A(l;(;tlig;lfl’g)p BLAST Hit in E-Value
strict superset of those found by ®MER 1.0. We intersected [ o100 so13s2 238 S72021  B2L68_C1172 protein [Mycobac- 7e-33
the two sets and compared them in order to identify whict terium leprae]
genes were found by both systems and which were foun 7170 m@ism@ 16 P27 fi"[%S_Oglj;gf;:;ﬁj:amw] se-12
eXCIUSIVer by one or the Other' These reSUItS are ShOWI’] ! 1056706 1057068 363 P17996  alpha-antigen A, extracellular 4e-10
Table 4. As the table shows, for each genome there are 0—4 ger [M. bovis]
found by G.IMMER 1.0 and missed by GBUMER 2.0. There are 1264312 1264551 240  UL0895  PcaF [Pseudomonas putida) 7e-10
three genomesyl.genitalium M.jannaschiiandA.fulgidus in 1678940 1679167 228 Q23381  probable methylmalonyl-coA mu- 0.002

H tase precursor [C. elegans)
WhICh a” Conserved genes found by_IGMER 10 are found 1699864 1700223 360 (55239  cpsB 5'-region hypothetical protein 2e-09
also by GIMMER 2.0. Typically, genes found by.@mER 1.0 but ) (E. coli]
not found by GIMMER 2.0 are relatively short and score just |1ss910s 1999421 228 L09108  IS401 transposase subunit [Pseu- 813
below the minimum scoring threshold. For example, in domonas cepacia] _
B_burgdorferi the gene found by GVMMER 1.0 and not by 2943374 2943598 225 P46711 trias;})};;jz?]ate isomerase tpiA 1e-07
GLIMMER 20 iS a 74_amino_aCid ribosomal pr0tein 814 3289702 3290229 528 P15026  istB protein (IS21) [E. coli plasmid 8e-12
(BB0491). The GIMMER 2.0 score for this gene was 88, just R68.45]
below the default threshold value of 90. Such genes could b | 3325931 3326098 168 530383  morphine 6-dehydrogenase [Psen- 1e-06
. . , .. . . domona putida)
InC.|Uded in GIMMER 2.0's predICtlonS with .S.UItabIe paramei.:e.r 3357425 3357225 201 Q02541 Cop$ [Pseudomonas syringae] 4e-08
ad]lést?]ents’ although at a cost Of addltlonal false-pOSItlv' 3568440 3568721 282 $72603  B1937_F2.68 protein [Mycobac- 3e-20
predictions. terium leprae]

In order to demonstrate that @MER 2.0 has a higher sensitivity | 357iss2 3571583 252 Q05266 Mycobacterium phage 15 0.004

than alternative gene-finding methods, we analyzed a recentiy _
sequenced genorrMycobacterium tuberculosirain H37Rv AII but two _(homologous to P15026 and_ Q02541) of_the listed genes are
. . intergenic with respect to the currently published annotatioiMftuberculosis

(21), for which GIMMER 2.0 was not among the computational The first three columns list the location of the predicted start and stop
methods used for annotation. Table 5 summarizes the genesdons and the length in base pairs; if Start > Stop then the coding
that were found by GMMER 2.0 but missed in the original sequence is on the reverse strand. The last three columns give the GenBank
annotation, and that have detectable homology to a codin ccession number, the function of the top hit found by BLAST (23), and
region from another organism. For each of the 13 genes identifie%oem%'lgg'éfsi'ggﬂe%;fiugﬂ? Chr:;rfzg‘; E-value s the number of
the table lists the function and identifier of the best hit found by
a BLAST search. Eleven of the genes occur in intergenic
regions in the published annotation of the complete genome;onCLUSION
and the remaining two (those whose closest homologs are
P17996 and Q02541) have relatively small overlaps witHn this paper we have described several technical improvements
coding sequences annotated as hypotheticalv@Rr 1.0 made in the GIMMER 2.0 gene-finding system and argued that
finds 11 of these 13 genes, missing those homologous te system is more accurate than previously recognized.
P17996 and Q02541. GLIMMER 2.0 also can be an effective gene finder for eukaryotic

It is worth noting too that the false-positive rate appears to bgenomes, especially those with a high gene density as is found
higher for G IMMER 2.0, as reflected in the fact that the numberin some parasites. For example, it is being used as the main
of additional genes (not confirmed by database matcheglene finder for the parasile’ypanosoma bruceihe agent that



causes African sleeping sickness, which currently is being3.

sequenced at The Institute for Genomic Research. This parasite
has few or no introns and a gene density estimated at 50%. Th

IMM scoring method in GIMMER 1.0 has also been used to

create a eukaryotic gene finderLI@MERM, that has been
quite successful in finding genes in the genomPlasmodium
falciparum the malaria parasite (22).

Table 6. GLIMMER 1.0 accuracy versusl.@/MER 2.0 accuracy with
overlap-length parameter oft@MER 1.0 raised to 51

GLIMMER 1.0 GLIMMER 2.0
Organism Genes Annotated Additional Anno%ated Additional
annotated | genes found | genes found | genes found | genes found |
H. influenze 1738 1718 276 1720 242
M. genitalium 483 479 85 480 82
M. jannaschii 1727 1717 230 1721 218
H. pylori 1590 1546 344 1550 322
E. coli 4269 4102 823 4158 868
B. subtilis 4100 4013 1060 4030 1022
A. fulgidus 2437 2389 297 2404 341
B. burgdorferi 849 845 86 843 62
T. pallidum 1039 1014 206 1014 250
T. maritima 1877 1852 226 1854 208
Total 20109 19675 3633 19774 3615

The value 51 was chosen to make the total number of additional genes
found by G.IMMER 1.0 as close as possible to the corresponding number

for GLIMMER 2.0. GLIMMER 2.0 still finds significantly more annotated
genes than GMMER 1.0.
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